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ABSTRACT 

Define    F < G    (F < G)    if    F    and    G    have  the same 
median,  say the origin and _G  ^(x)     is concave- 
convex about  the origin    (G  1F(x)/x    is  increasing 
(decreasing)   in    x    positive   (negative)).     Conservative 
tolerance limits  are derived  for distributions which 
are s-ordered with respect to the Laplace distribution. 
These are especially reasonable for mensuration data. 
In addition, many  inequalities concerning combinations 
of order statistics are obtained.     These results are 
useful in robustness studies of tolerance  limits, 
estimates and statistical tests derived  for specified 
distributions such as the normal  distribution.    Some 
examples are given. 
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TOLERANCE LIMITS AND INEQUALITIES  FOR s-ORDERED DISTRIBUTIONS 

by 

Michael J.  Lawrence 

I.     INTRODUCTION 

Motivated by  classical but  somewhat  unsatisfactory measures  of  skewness 

and kurtosis,  van Zwet  (1964)   Introduced  two partial orderlngs on  the space of 

distribution  functions.    Barlow and Proschan  (1966a)   Investigated  the 

properties of  linear combinations of order statistics  from distributions 

ordered In the sense of van Zwet but  corresponding to positive  random variables. 

Our objective is   to extend the results of Barlow and Proschan  (1966a,1966b)   to 

distributions  s-ordered in the sense of van Zwet but not  restricted  to the 

positive axis.     If we were to confine attention exclusively to symmetric 

distributions,   this would be a relatively straightforward task.     However, we 

extend the s-ordering definition of van Zwet  to include a wider class of 

possibly skewed distributions.    We obtain  tolerance limits which are 

conservative for a wide class of distributions.    This class of distributions 

is especially reasonable for measurement  type data.     In addition,  we obtain 

many results  concerning linear combinations of order statistics  from s-ordered 

distributions.     These results should be useful  in robustness studies of 

estimates and statistical tests derived  for specified distributions  such as 

the normal distribution. 

The basis of  van Zwet's ordering between distribution functions,  and 

hence between random variables,  is  that one  random variable can be expressed 

as a convex or concave-convex transformation of another random variable.    We 

adopt van Zwet's notation for c-ordering:     F < G    if and only  if    G    F    lb 

convex on the support of    F  ;  and  a more general definition of s-ordering: 

F < G    if and only  if    F(m)  ■ G(m)  ■ ^    and    G    F    is concave-convex about    m  . 
s 
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on the support of    F .    If    F    and    G    are symmetric,  then our definition of 

■-ordering coincides with that of van Zwet.    For convenience, we shall assume 

that the median of    F   and    G    is the origin. 

One expects that if    F < G    then    G    Is more skewed to the left than    F . 

If skewness is measured by the standardized odd central moments,  then we would 

expect  (assuming for convenience that    EX - EY ■ 0  , and that    X (Y)    has 

distribution    F (G) ) 

a n Ex2k+1     <     EY2k+1 k     , 7 (1-1) : k+Js - —rrrq       k ■ ^^ •• 
(EX*2) (EY^) 

Van Zwet proves this result and also that if 1 and n tend to infinity and 

11m — ■ r , 0 < r < 1 , then F < G if (1.1) holds asymptotically for some 

fixed k , all 0 < r < 1 , and order statistics X.,   and YJ  . If F 
' ' i,n      i,n 

and G are symmetric, then F < G would seem to imply that G has heavier 
s 

tails or more "kurtosis" than    F .     Van Zwet proves this when the even 

standardized central moments are taken as  the measure of "kurtosis". 

Barlow and Proschan  (1966a,b)     have derived tolerance limits for the 

distributions which are c-ordered with  respect to certain distribution 

functions,   as well as developing many  Interesting inequalities  for linear 

combinations of the order statistics  from c-ordered distributions.    They have 

particularly exploited the properties of distribution functions which are 

convex with respect to the exponential distribution, and have also introduced 

and developed for positive random variables,  the properties of  the weaker 

G    F^x) star-shaped ordering;  i.e.,     *—*•      is increasing in    x    for    x    on the 

support of    F    and    F(0)   - 0  . 

It is  the object of this thesis  to develop some of  the statistical 

properties of distribution functions  related by both s-ordering and star- 
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shaped ordering.    We will be particularly Interested In a natural class of 

distribution functions—viz., those which are s-ordered with respect to the 

Laplace distribution (also called the bilateral exponential distribution). 

Examples of such s-ordered  distributions are: 

U-shaped <  uniform < normal  <  logistic < Laplace < Cauchy 
S S 8 S S 

(cf. Van Zwet (1964), pp. 70-71, 72-73.) 

There are numerous reasons why we are interested in studying the properties 

of distributions related by s-ordering.  The most apparent one is that very 

often we do not know the exact distribution but because of physical consider- 

ations we can make certain deductions about the properties of the distribution, 

and hence do not want the disadvantage of a distribution-free approach.  For 

instance If we measure the length of an object, it is plausible that the 

probability of obtaining an error in the range (|x|,|x| + 5 x) , given that the 

error is at least  |x|  is Increasing in  |x| .  The class of distributions 

having this property are s-ordered with respect to the Laplace distribution. 

Another example would be the commonly occurring situation where the normal 

distribution is assumed, but we suspect that this is not true and that in fact 

the tails are heavier or lighter than the tails of the normal.  We then wish 

to know if the normal assumption is conservative or not.  In short, we want to 

know how robust the normal distribution is against s-ordered alternatives. 

In Chapter II, we develop some new inequalities for concave-convex 

functions  ^ , when $    satisfies a skewness condition.  These Inequalities 

are used in Chapter III to construct tolerance limits for distributions s- 

ordered with respect to the Laplace distribution (these distributions we call 

SIFR).  We further investigate symmetric SIFR distributions by obtaining sharp 

bounds on  F symmetric and SIFR when given only the mean and the variance of 

■i I; 

- 

-av.  &%,■!'*mM*.*j*m 
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F . This is used to construct a confidence bound on the variance of F . 

Also in Chapter III, the robustness of tolerance limits from the normal 

distribution against s-ordered alternatives is investigated. Results are 

obtained for small sample sizes. 

In Chapter IV, we are Interested in inequalities for the order statistics 

and their expectation when related by the weaker r-ordering. We say that 

F < G If F(0) • 0(0) - H    and G  W  is increasing (decreasing) in x 

positive (negative). Bounds on the expectation of the i   order statistic 

from F are given in terms of the expectation of the order statistics from 

G when F < G and F and G are symmetric. Also, an inequality relating 

a linear combination of the expectations of the order statistics from F and 

G is given for F < G , G symmetric about the origin and the direction of 
s 

the skew of    F    known. 

If    F < G    and    F    and    G    are symmetric,  then we prove that not only are 

the standardized even central moments of    G    greater than that of    F    but so 

are the usual sample estimates of  the standardized even central moments in a 

stochastic sense. 

Preliminaries 

| We adopt the  following definitions: 

-1 
, (i) F < G    if and only  if    G    F    is convex on the support of    F . 

I (ii)       F < G    if and only  if     F(0)   « G(0)  - H    and    G~ F    is concave-convex, 

about  the origin,  on the  support of    F . 

(ill)     F < G    if and only if    F(0)   - G(0)  - H    and    G       ^       ls increasing 

(decreasing)   for    x    positive  (negative)  on the support of    F . 

(iv)       F    is SIFR(SDFR)   if and only if    F <  (>) G  , where    G    is the Laplace 
i S S 

-Ixl distribution;   i.e.,     G'(x)   - 4 e   '   '   ,  -» <  x <  «>  . 
j i 

(v) X £t Y    if and only if    P(X <_ a) ^ P(Y ^ a)   ,  -» < a  < « . 

"T 
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We assume throughout that F and G are continuous with median at the 

origin. Note that F < G implies F < G . 

Define F 
(1) 

to be the distribution of the 1-th order statistic from F 

and F  to be the distribution of 
a 

that 

Since G(i\*(i\  " G F we««ee 

(a) F < G implies F(i) < G(i) 

(b) F < G Implies F(1) <  G,^  . 

Tf furthermore, F and G are symmetric about the origin, then for a ^ 1 

(c) F < G implies F < G 
s     r      a c a 

(d) F < G implies F < G 
r    r     a r o 

on the positive axis. 

If G is symmetric about the origin and Jb ■ {G(ex) j 6 > 0} then a 

sufficient statistic for £   ba^ed on a oomplete  random sample 

I- (Y1,Y2 Yn) is given by (|Y1|,|Y2| JYj) . Suppose we are 

interested in studying the robustness of statistics derived under the 

assumption that the observations are distributed according to G when in fact 

they are distributed according to F where F < G .  Since by (c), F < G 
o 8 

implies F, < G. , the results of Barlow and Proschan (1966a) apply to linear 

combinations of the sufficient statistics for G . 

Throughout we let X. < X. < ... < X (¥.<¥_<...<¥) be an ordered 
x"~z~"   —nx-"/"-   —n 

st —1 st 
sample from F (G) , and we observe that Y - G F(X) where ■  denotes 

stochastic equality. 

M 
1 li 
I I! 

* i 
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II.     INEQUALITIES FOR CONCAVE-CONVEX FUNCTIONS 

Some Inequalities on concave-convex functions,  interesting in their own 

right and also required later on, will now be developed.    We will need a slight 

extension of a theorem by Hardy, Littlewood and Pdlya (1929).     In this 

connection,   see also Barlow,  Marshall and Proschan  (1967)  and Kariln and 

Novlkoff  (1963) p.   1252. 

We say that    ^    is concave-convex about  the origin and  defined on    [-a,b] 

If    (j>    is concave on    [-a,0]    and convex on     [0,b]   . 

Theorem 2.1 

Let u  be a signed measure on  [-a,b] , 0 < a , b < » , then 

b 

/ (Kx)dii(x) 1 (2.1) 

-a 

for all $ conceve-convex about the origin, continuous at the origin, and 

defined on  [-a,b]  if and only if 

b b 

(2.2) Axdp(x) - 0 , AdM(x) - 0 

-a -a 

and 

-2' b 

(2.3)       /(x + z,)du(x) + / (x - z)du(x) I 0 

-a z 

for all 

z e [G.b] 

•z' e (-a,0] 
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Proof 

Suppose first that inequality (2.1) is satisfied for all $    concave- 

convex about the origin, continuous at the origin and defined on  [-a,b] . 

Now (2.2) follows if (j)(x) - (+) 1 or (Kx) - (+)x , and (2.3) follows if 

<j)(x)  is a "double angle function," i.e., a function of the form 

x ^ -z1 

-z' <  X < z 

X  >^ z 

Next,  suppose that  (2.2)  and  (2.3)  hold.    Since    ^    is concave-convex 

about the origin and continuous  there,   there exists    a  ,   ß    such that 

<t>(x)   - ax -  ß >_(<)   0    for    x >_(<)  0     . 

Hence we may assume that 

())(x) >(<) 0 for x >(<) 0 . 

Consider now a sequence of functions $  (x)  such that each $  is the 

sum of a finite number of positive multiples of "double angle functions" and 

if) (x)  is increasing in n for x ^ 0 and decreasing in n for x <^ 0 . 

Since 0 is concave-convex we can construct a sequence of functions 

(J) (x) ^.(f.) 0 for x iL(l) 0 such that  f (x)  converges upward (downward) to 

0  for x > 0 (x < f1) .  By construction 

b 

/ 
())n(x)du(x) ^ 0 

for each  ^  and (2.1) follows from the Lebesgue monotone convergence theorem. 
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Remark 

If ^ in Theorem 2.1 Is not only concave-convex but also satisfies 

(Kx) £ -♦(-x) , then we see that the inequality (2.3) need only hold for all 

z , z* satisfying z >_z*   . 

We will now prove a lemma which although fairly elementary is nevertheless 

quite useful. 

Lemma 2.2 

n       m 

i-1     J-l J J 

for all 

1iY1lY2l ^Y 10 

1 > 6  > 6  >   > 6  > 0 
— 1—2—     — m — 

if and only if 

0 
and we define £ - 0 . 

1 

Proof 

Let 

ll1 
for Ü <^ j <^ n 
and 0 < k < m 

u -1 - y u 
i i 

9 Uj  = YJ  " YJ+1 » U = Y n       'n 

m 
Vo  * 1 "  (  vl > vk " 6k - 6k+l « u =« 6 

m        m 

and 
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The lemma can now be reformulated as 

(2.4) 
n       m 

I Vi + ^ Vk -x 
0 J J   o 

for all 

(2.5) 

0_<u<l  ,  O^j^n  ,  and [ u - 1 

in 

0<_v, <^1  ,  ü<_k^m  ,  and [ v. - 1 

If and only if 

(2.6) A^ + B, > x 
j   k - 

for 0 <^ j <^ n 
0 < k < m 

The proof is straightforward.  If (2.4) is true for all u. , v.  satisfying 

(2.5), then clearly the inequality (2.6) must be satisfied.  If (2.6) is true, 

then 

m     n m     n 
I    \    1    u (A + B ) >  [ v  J u x - x 
c-0 K j=0 :,  J        k-0 K j-0 J 

which completes the proof. || 

We would like to determine conditions on a..,a„, ..., a  such that 

*(? aixi) 11 V(V 

holds for all x1 £ x? — "" ^ x  and all ^ concave-convex. However, it is 

mmmmm 
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possible to construct an example to show that no such inequality holds for all 

$    concave-convex, all ordered x's and a. ^ 0 , 1 <^ i <^ n .  If we assume 

that $    Is concave-convex about the origin and <H0) ■ 0 , then a simple 

additional condition on $    which admits a solution to our problem is 

(Kx) 1 -<K-x) for x ^ 0 . 

In proving the next theorem it is necessary only to consider <t> such 

that  ^(0) ■ 0 , and 4) is concave-convex about the origin. This can be seen 

by making the transformation  (J) (x) ■ <Kx-t-c) - <t>(c) , if $    is concave-convex 

S " j ai about  x ■ c . To simplify notation we will define A^ ■ ) a3    and 

Theorem 2.3 

If (j) is concave-convex about the origin and defined on (-".b) , 

(Kx) < -<j>(-x) for x > 0 , 4>(0) ■ 0 and $    is  continuous at the origin then 

(2.7) {? Vij ^ I V(xi3 

for all x. j< x_ ^_ ... 1 x, 1 0 1 \+-,  1 ••• 1 x i. b if and only if (2.8) 

or (2.9) is satisfied, where 

(2.8) 

0 <^ -A    + A    <   1 

A    <  0 for    l<i<k<j<_n     , 

(2.9)     1 £ ArI   <  Ar,+1 1 

Ä    <  -1 
i - 

_^ A     > for    0<p<r'^l^k<j<^r<q<n    , 

and    r'd ^ r1 ^ k + 1)   ,  r(k ^ r <_ n)    are fixed. 

1^^^m^^m^mm 
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Proof 

It will be cunvenient to assume x. - 0 with a - 0 . Clearly we can 

always do this with no loss of generality. 

We use Theorem 2.1 and adopt the measure 

- 1 . x - I Vi 
1 

y(x) 

1 - I a  , 
1 

X ■ X. 

x - 0 

, elsewhere 

Clearly then 

OS 00 

/ dy(x) - Axdu(x) - 0 

and hence from Theorem 2.1 we see that 

*(I aixi)  - I a^tx^  < 0 

if and only if 

(2.10) 

-2" 

■/ 

00 

/ 
(x + z^duU)   -   I   (x - z)dij(x)   < 0 

+z 

In what follows we shall assume that 

V z E [z',«] 

-z' E [-»,0] 

x < -z' < x ^1 < 0 
S        —  8+1 — 
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and 

0 1 V! 1 * < x^ . 

If no x  exists, add an extra term x < -z'  and a ■ 0 . Similarly 
s o o 

add x . 1 > z If x < z and let a ,  - 0 . 
n+1 n — n+1 

Case (1) 
n+1 

Assume that -z' <^ I    ax <_ z  ,    Now the left hand side of (2.10) equals 
0  1 1 

(2.11) 

s-l 

" I    Al(xi " "i+J   -  As(xs + Z,) " \(X£ - Z) 

n+1 _ 
- I    A (x - x  )  • 

£+1 ^^ ^^   1 1 

Since x. - x. .. f. 0 , x. - x1_1 >_ 0 and since these differences can be 

arbitrarily small for suitable choice of the x values, we see that the 

necessary and sufficient conditions for (2.11) to be nonpositive are 

A < 0 1 < i < k 

(2,12) 
A^O    k<j£n 

If (2.12) holds then  V a^x, > 0 . u     11 — 

Case (2) 
n 

Assume z < } a.x, , and recall that z > z' > 0 . 
— tii —   — 

1 
(2,10) can be written as 

The left hand side of 



"T"! 

13 

t 

k-1 n+1 
I    Ai(xi - xi+1) + J Äi(x1 

k+1 "l-P " z 

8-1 

" VX8 + Z,) -  |  Al(Xi V^ 

n+1 
" Ä^^ " 2) - J^ Ä1(xi - x^^ 

(2.13) 
("r- A8 + \ - l) 

J+l + "T (-A8 + V^ + --- 
X X 

+ -¥ (-\ + Vi* + "T1 ^A-i + ^-2) + ♦ • • I   • 

-z 
Now from Lemma 2.2 and identifying x ■   A + A - 1 , we see that the 

necessary and sufficient conditions for (2.13) to be nonpositiva are 

— A    +A-1<0 
Z 8 I — 

(2.14) 

(.-f) 
for    s<h<^k<g<^a    . 

+ A    -1-Ah^0 

Since (2.14) must hold for all z , z' such that 

z' < z < I  aixi  . 

then from (2.12) and (2.14), 

- — A+A-l<-A+A-l  , 
z  s   £    —  s   £ 

M) + A -1-A, <A  -1- \^\-1-\ 

and we have that (2.14) holds if and only if -A, + Ä < 1 for 0 < h < k , 
h   g —        —  —  ' 

k < g <^ n . 

Thus, we have established the necessity and sufficiency of conditions 
n 

(2.8) for the case  £ a.x. >^ -z' . 
j-l   ' 
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Cwejai 

Assume that    7 a.x    < -z*   .    Note that if    -z'   < x.     and    z > x      then ''11— —   1 —   n 

the left hand side of  (2.10)  is nonpositive.    The left hand side of  (2.10) 

can be written as 

(2.15) 
[(Vf'.-f)- 8— (-A    + A ^J  + 

Z 8 8+1 

«,-1 
+  _^   (.Aji   +   ^ _,)    +    ...] 

By Lemma 2.2,   the necessary and sufficient conditions for  (2.15)   to be 

nonpositive are that 

z*     z* 
A0 - — A + — < 0 

)!,   Z   8   z  — 

— (1-A ) + A - A. + A  < 0 
z     s    s    h   K —  > 

for s<h<k<g<£ 

By noting that if -z' < x,  then A - A„ * 0 , and if z > x  then 0 — 1       sO — n 

A." A ,, ■ 0 , and that the above conditions must hold for all  z > z' , 
%        n+1    ' — 

we see that the necessary and sufficient conditions for (2.7) to be true in 

the case that \  a.x. ^_ -z' , are (2.9).  Now from (2.9) we see that 

\  a.x. ^ x.  and hence if \  ax. l_  -z' then the left hand side of (2.10) 

is zero. I I 

Remarks 

1. We see that the only concave-convex functions which admit a solution 

of (2.7) with all weights a »a», .... a  nonzero are those which can be 

generated from a double angle function with —  bounded above and below. 

2. If in Theorem 2.3, we reverse the skewness condition on  $ and set 

$(x) > ~(p(-x)  for x > Ü , then we can see from the proof of the theorem 
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that  (2.8)   Is  replaced by 
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OlAjil 

Ai-0 

for llilk<J<^n 

I 

and for (2.9) we need r* - k+1 . 

By considering $  (x) - -iK-x) we get the following corollary. 

Corollary 2.4 

If    $    concave-convex about the origin and defined on     (-a,00)   ,   41 (0) «0  , 

<t>    continuous at  the origin and    4i(x)   >-<)>(-x)     for all    x ^ 0   ,  then 

^1 Vi)4ai*(xi3 

for all -a ^ x.< x < ... 1 x. ^ 0 <^ x. . 1 •. • 1 xn if and only if (2.17) 

or (2.18) is satisfied. 

(2.17) 

^ 1 0 

AjiO for    l<i<k<j<n    , 

0 .1 Ai - A    < 1 

A    - A    - 0 
q       P 

(2.18)  l^Ä 1Ä+1<^..._1 ^ > for 0<p<r'^i^k<j<r<q<n . 

A, 1-1 

and r* (1 ^ r* <^ k+1) , r(k 1 r <^ n)  are fixed. 
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By noting that if (j» Is concave-convex then -$    Is convex-concave, we 

can obtain similar inequalities for convex-concave functions. As they follow 

trivially, we shall not include them here. 

In the special case that $    is concave-convex and antisymmetric (i.e., 

♦(x) - -^(-x)) , we can set z - z'  in the proof of Theorem 2.3 and obtain 

the necessary and sufficient conditions on a..,a-, ..., a  such that (2.7) 

is true for all $ concave-convex and antisymmetric. However for this special 

case the result also follows directly from Lemmata 4.1 and 4.3 of Barlow and 

Proschan (1966). 

Theorem 2.5 

If $    is concave-convex and antisymmetric about the origin and defined 

on (-00,00)  then I 

*(l a^j <_ \  aiMxi) 

for all x. <_ ... £ x< 0 ^ .,. <. x , if and only if (2.8) or (2.19) is 

satisfied. 

0 <^ -Ai + A < 1 

(2.8) A < 0    ^for l^i^k<j<^n 

(2.19)  A < -1  ^for 0^p<r'<^i<^k<j<^r<q<_n 

A -= Ä * 0 
p  q 
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Proof 

The proof follows from Barlow and Proschan (1966) with the observation 

that 

H        K n 
I  a «Kx.) - I  - a *(-x ) + I    a *(x )  , 
1    1   1   1   1   k-t-l i  i 

and hence the right hand side only  involves    $    convex on    [0,«) 

Theorem 2.6 

If $    is concave-convex and antisymmetric about the origin and defined 

on (-<,,»,00) then ■ 

*( Xvi) ^ j/i^V 

for all J^ £ x2 _< ... ^ Xj^ ^ 0 <. ... ^ x  if and only if either (2.20) or 

(2.21) is satisfied. 

(2.20) 

A1 >. 0 

A    <  0 for    l£lf.k<j£n 

0 <_ A1 - A    <  1 

M-l 

(2.21)       Ä    >    1 

A    - A    - 0 
p      q 

for    ü<^p<r,   <^i<^k<j<^r<q_<n    . 

* 
1    i 
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III.     TOLERANCE LIMITS AND CONFIDENCE BOUNDS 

It will be convenient to let    X (Y)     have distribution    F  (G)   .    We 

assume that    G    is symmetric about  the origin and strictly  increasing on its 

support and that both    F    and    G    are continuous.     Let    X    < X0  <   ...  < X 
1 —    2 — —   n 

(Y,   < Y.  <  ...   < Y )    denote an ordered sample from    F (G)   .    We say that a i -    ^ — —   n 

random variable    X   Is stochastically greater than a random variable   Y  , 

denoted by    X I* Y , if    P(X ^ x)  ^ P(Y ^ x)    for all    x  . 

We construct  tolerance limits by using the relevant  inequalities of 

Chapter II to give stochastic comparisons between the order statistics from 

F    and    G    when    F < 0 .     Consider for example Theorem 2.3.    The weights 
9 

a..,a?l ..., a  in inequality (2.7) which must be selected to satisfy 

conditions (2.8) or (2.9), are dependent on the value of the index k defined 

by X. £ ... <^ X. ^ 0 <^ X. . .1 ... 1 X  , which is therefore a random variable. 

Let X ■ (X-.X«, ..., X )  denote a random vector of ordered observations. 

Thus when making a stochastic comparison using inequality (2.7), the weights 

must be chosen as a function of X , i.e.,  (a,(X), ..., a (X)) = [a(X)] . —      '        ^ —     »n_    —_ 

We require that these weights satisfy conditions (2.8) or (2.9) for every 

possible outcome, X ; and then say that [a]    satisfies (2.8) or (2.9). 

If we let  i|>(x) - G~ F(x)  in Theorem 2.3, then the condition 

G~ F(x) <_ -G~  F(-x) , x ^ 0 , will be satisfied, for example, if 

G(0) « F(0) - ^ , G is symmetric about the origin and 1 - F(x) >^ F(-x)  for 

x ^ 0 . 

Theorem 3.1 

If  F < G , G symmetric about the origin,  F(0) - G(0) - h   , 

1 -  F(x) ^F(-x)     for x^O and  [a]  satisfies (2.8) or (2.9), then 
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(l^Vh)  f^I-i®^ 

Proof 

From Theorem 2.3 we have that If  [a]  satisfies (2.8) or (2.9), then 

G'Ml ajOpxJ <_ I  ai(X)G'
1F(X1) &  [ ai(Y)Y1  . 

The stochastic equality follows from the fact that G F preserves 

order with respect to the origin, and G FUJ, G F(X-) G F(X ) are 
1       2 n 

jointly distributed as the order statistics from G . I| 

Corollary 3.2 

If  F < G , G symmetric about the origin F(0) - G(0) - »j , 
9 

1 - F(x) ^ F(-x)  for x>^0  and  [a]  satisfies (2.17) or (2.18), then 

(iVi^i) f^IVP^i] 

If we let    F    be symmetric about  the origin, we  can similarly prove the 

following: 

Theorem 3.3 

If    F <  G ,  F    and    G    symmetric about the origin and     [aj    satisfies 
s 

either  (2.8)   or  (2.19),  then 

(la.CDV^    fF^QC)^      . 

I 
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Corollary 3.4 

If    F < G ,  F    and    G    symmetric about  the origin,  and     [a]    satlsfiet 

either (2.20) or (2.21),  then 

(|ai<X>Yi)    i'^IV^i)      • 



21 

3.1    Tolerance Limits for SIFR and SDFR Distributions 

Barlow and Proschan  (1966b)  have considered tolerance limits for the 

class of distributions which are c-ordered with respect  to the exponential. 

These distributions possess  an  increasing failure rate,   and so arise naturally 

when wear-out is present.    The two sided analogue of  the increasing failure 

rate  class is the  class of distributions which are s-ordered with respect  to 

-Ixl 
the Laplace distribution    G  ,   i.e.,    G1 (x)  - Jj e   '    '   .     We will call the 

distribution F SIFR(SDFR)  when     F <  G  ,   (F >  G)     and     G    is the Laplace.     We 
s s 

note  that this implies that     F(0)  - G(0)  ■ ^ .    The distribution function    F 

with density    f  ,   F(0)   - 4    is  SIFR(SDFR)   if    ,   f<ffi,  r     is increasing 
1 - F(x; 

f (x) (decreasing)  in    x    for    x >  0    and      ) \       is decreasing (increasing)   in    x rv.x; 

for    x <^ 0  .    Note that    F    need not be symmetric and  that we chose the median 

at the origin only for convenience.    Recall that the normal distribution is 

SIFR and  the Cauchy distribution  is SDFR. 

The SIFR class can arise naturally when we are considering problems such 

as the distribution of the error of some measurement,   for here we would expect 

that  the probability of an error in the range    (|x|,|x|  + 6x)   ,  given the 

error is greater than     |x|   ,  would be increasing in     |x|   .    We will develop 

tolerance limits for F SIFR and F SDFR in the one sided case when    F    is 

skewed and in the two sided  case when    F    is symmetric. 

If we have a complete  sample and    F    is symmetric about the origin,   then 

it  is  an easy matter to  construct  conservative two sided tolerance  limits  for 

1       - Ixl/6 
F  .     We need only  assume    F <  G    where    G'(x)  ■ -rr- e   '    '       .    Then 

r it) 

(|Y|     <   |Y|     <  ..,   <   |Y|   )     is  a sufficient statistic  for    6    and tolerance '   > l —  '   'I — — ''n 

limits for G may be constructed from these.  Since  F  , the distribution 

of  |x|  is star shaped with respect to G , the distribution of  |Y| 
a   G"1Fa(x) 

(which is the exponential distribution) i.e.,    is increasing in 

f 

^M^^MI^^H 
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x , we can apply Theorem 3.1 of Barlow and Proschan (1966b).  Let 

ertnQO - I  (n - i+Dr'1 (IX^ - Ixl^) 

and 

3       -2r load-q) 

X„(2r) 
a 

and 

** i 
C     = max (B    , r(n - r+l)~ ) 
a,q,r        a.q.r 

Then 

** 
C    6   (X) 

/ 
dF(x) 1 q > ^. 1-a 

-C    6   (X) 

However, If we have a censored sample and/or F is not symmetric this 

inequality is not  valid. 

We will need to develop some properties of the Laplace distribution. 

Given an ordered sample X, < X„ < ... < X, < 0 < X. .<...< X  , we define 1—2— —    k—      —    k+1 — —    n 

the  statistic    6   , (X)     by r   , r, n —        J 

V>r>n(X)   =    I(   -   i(X1 - X1+1)  + J2   (n -  i+l)(X.   - X^^ 

If     X,   >  0    let     k =•  1    and   if    X    <  0    let    k = n-1 
1 n 
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We can easily verify that if Xn < X- < ... < X, < 0 < X. in < ... < X 1—2— —    k-—  Tt+1 — —    n 

are distributed as  the    n    order statistics from distribution    G    where 

G* (x) •= ^r e_'X'       ,   6  > 0    (the Laplace distribution with scale parameter    6 ), 

then the maximum likelihood estimate of the scale parameter    6   ,  given censor- 

ship at    r'     and    r    where    r' £ k ,  r > k    is 

-X  t(r'-l) +1     |X  |  + X  (n-r) 

6  = r-r'+l 

r' r 
Hence we see that if r and r' are such that  lim — and lim —  exist 

9 .    (X) n n 
r r n "* 

finitely then  '—f—r— is asymptotically the maximum likelihood estimate 

for the scale parameter when X has the Laplace distribution with scale 

parameter 6 . 

Lemma 3.5 

If Y - G where G'(y) B h  e"'y'  then 

26r. r n(I) ' X2(2(r-r'-l))  . 

(N.B.  -  denotes "is distributed as".) 

Proof 

If Y - G , the Laplace distributed function, then 

P(Y^x + ylY^y>_0)-l-e~x 

which is independent of y . Now if Y.  is the h   order statistic from 

G    we have 

p(Yh+rYh-xl Vy-0) " p(Yh+i-
x+ylVy-0) = e"(n"h)x 
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and since this is independent of y 

P(Yh+l-
Yhixl   Yh ^ 0)  - e" (n-h>x    . 

or the random variable 

(n-h)(Vi-V 

given that Yh ^ 0 is distributed as the unit exponential. Now from 

symmetry we have 

P(Yn-h-Yn-h+l^l
Yn-h+ll

0> " P<WVXI V0) " e 
-(n-h)x 

and hence the conditional distribution of KY. , - Y ) given Y   < 0 is 

exponential with mean unity, which completes the proof. | 

Let H_(rV) »4^ik£lf 
oi,q 

and 
X^Cr-r'-l) 

^^(r'.r) if x^r-r'-l) £-2m log(l-q) 

C"  (r'.r) 

I 
m 

If  x^Cr-r'-l) > -2m log(l-q) 

where m ■ tninCr',n-r+l) . 

We first give the tolerance limit on the tail probability,  1 - F , for 

values to the left of the median. 

Theorem 3.6 

If F is SIFR,  F(0) -4,1- F(X) >_ F(-x) for x ^ 0 , and 

0 ^ q <^ 4 then 

"FI
1
" 

FK.l-2q(r,'r)'r',r,nW] 1 ^l i ^  • 
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Proof 

Let    G    be  the Laplace distribution,   I.e.,    G'(x) - ^ e~'X'   ,   then 

from Theorem 3.1, 

pf-H    .   „   (r,,r)e   , (X)l   ^ GF-H    .   _   (r'.Oe   , (Y)l L    a,l-2q r'.r.n'-'J   -      [    a,l-2qv     *      r'.r.n^'J 

for mH . _ (r'.r) > 1 .  It follows in this case that since 
a,l-2q      - 

we have 

PF{FK,l-2q
(r,'r)ir'fr.n^]  ^4 >-^    ' 

Now if mH , „ (r'.r) < 1 , we note that 
a.l-2q 

F -- ( - - 6 ,    (X)]     ^ G (- - 6 ,    (Y))  < G (-H . . (r,,r)e ,   (Y)) 
^ m r'.r.n-;  -   \ m r,,r,nv--y  -  \ a,l-2qv  '   r'.r.rT-y 

which proves  the  theorem.   | j 

Clearly Theorem  3.6 implies a tolerance  limit on the distribution    F    for 

values  to the right of  the median.     However,  we shall not present  this result. 

We note that  the  tolerance limit in Theorem 3.6 achieves    1-a 

confidence for the Laplace distribution,   (i.e.,  is sharp) only when 
2 

X  [2(r-r'-l)]  <^ -2m log2q  .    The following corollary gives bounds on    q    and 

a    such that  this condition is satisfied. 

Corollary 3.7 

If    F     is  SIFR,     F(0)  -4.1- F(K)   >  F(-x)     for    x >  0   ,   1-a   >   1-e"1 
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and q f. % e 

r-r'-l 
m then 

^^-^-«a.l-Zq^'^r'.r.n^] - ^ } 
> 1-a 

Proof 

From Theorem 3.6 it suffices to show that x 2(r-r'-l) <^ -2m log2q . 

Let K denote the chi-square distribution with 2(r-r,-l) degrees of 

freedom.  Then since log K(x)  is concave, K(2(r-r,-l)) _^ e   by Jensen's 

inequality.  Therefore 

X^(2(r-r'-l)) 

2(r-r,-l) 
< 1 

Now 

implies 

r-r'-l 

q 1 -i e 

•2m l0B(2q) 
r-r'-l   - i 

and the result follows. || 

If F is SIFR and symmetric about the origin we have from Theorem 3.6 

Corollary 3.8 

If F is SIFR and symmetric about the origin, then 

C  (r,,r)9 ,   (X) a,q      r ,r,n — 

F., / f dF(x) >_ .j \ >   l-a  . 

-C* (r'.r)Ö ,   (X) 
Ti,q     r ,r,n — 
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In a similar way to Corollary 3.7 we obtain 

Corollary 3.9 

If F is SIFR, symmetric about the origin,  1-a >^ 1-e   and 
_ r-r'-l 

q > 1-e   '    , then 

H  (r,,r)0 ,    (X) a,q      r'.r.n^' 

/ 
PF < / dF(x) ^ q > ^ l-o.  . 

-H  (r',r)e ,    (X) a,qv     r'.r.n-'' 

It can be seen from Corollary 3.9 that we generally have to truncate the 

sample in order to have a sharp tolerance limit.  For example, if we are 

computing the tolerance limits between which 95% of the symmetric SIFR 

distribution F lies with 99% confidence when n « 12 , we will need to set 

r' ■ 2 and r - 11 in order that the limits be sharp. 

We now give the tolerance limit on the tail probability,  1 - F , for 

values to the right of the median.  We let 

H  (r'.r) if x22(r-r,-l) > -2(n-2) log(l-q) a,q a        - 

C. n(r,»r) ot,q 

-— if  x22(r-r,-l) < -2(n-2) log(l-q)  . n-z a 

Theorem 3.10 

If F  is SIFR,  F(0) . Jj , 1 - F(x) ^ F(-x)  for x >_ 0 ^nd 

0 <^ 1-q <_ Sj , then 

PF { 1 - F[Cl-a,2q-l(r,'r)5r'.r,n(^] ^ ^ } ^ 1-a  ' 
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Proof 

Let    G    be the Laplace distribution,  then from Theorem 3.1 

F[Hl-a.2q-l
(r,'r)§r'.r.n(^   ^ ^l-^-l^''r) V .r.n^] 

for  (n-Z)!!,  _ ^r'.r) < 1 and % < q <  1  .     It follows that since i-a,/q-i     -        — -> — 

PG{G[Hl-a.2q-l
(r,'r)5r'.r.n(l)] 1 ^ = ^  ' 

we have proved the theorem in the range 

^"l-a.Zq-l^'^i1  ' 

that is 

xj_a2(r-r
,-l) > -2(n-2) log2(l-q) 

Now suppose that  (n-2)H1   _  .(r'.r) > 1 .  By noting that 

iG[Hl-«.2<I-l
(r',r>5r'.r,n^]  • 

the proof follows. | | 

2 
We note that the tolerance limit is sharp only when x1_ 2(r-r'-l) >_ 

-2(n-2) log2(l-q) .  The following corollary gives bounds on q and a such 

that this condition is satisfied. 

Corollary 3.11 

If  F  is SIFK,  F(0) - !5 , 1 - r(x) ^ F(-: )  for  x ^ 0 , l-n ^ l-e"1 , 

_ r-r'-l 

and  1-q > ij e    ^   , then 

mm^m 



^{^^"l-^q-l^'^^'.r.n®] >-1^}   ^1-a ' 

Proof 

By Theorem 3.10 we have only to show that 

X^Cr-r'-l) ^-2(11-2)  log2(l-q)     . 
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Let    K    denote the chl-squared distribution with    2(r-r,-l)    degrees of 

freedom.     Since    K    is IFR,  we have from Barlow and Proschan (1965)  that 

K[2(r-r,-l)]   < 1-e -1 

Now 

therefore 

K[xJ_a2(r-r'-l)j     - 1-a 

X^a2(r-r'-l) 

2(r-r,-l) > 1    . 

_ r'-r-l 

If    1-q  >_% e , we have proved the result.   | | 

In noting that    F(0)  - ^    by assumption, we see from Corollaries 3.7 

and 3.11  that we can obtain sharp tolerance limits on    1 - F    for most    q   , 

and    a    values of interest. 

If    F    is SIFR and symmetric about the origin, we have  from Theorem 3.10, 

Corollary 3.12 

If    F    is SIFR and symmetric about the origin,  then 
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C,   (r'.r)^ ,   (X) 
l-a,qv     r'.r.n-7 

/ 
dF(x) 1 q/ i 1~ot 

-C.   (r'.r)^ ,   (X) 
l-a,qv     r'.r.n^7 

Constructing a proof similar to Corollary 3.11, we obtain Corollary 3.13 

for the symmetric case. 

Corollary 3.13 

-1 
If F is SIFR, symmetric about the origin,  l-a >^ 1-e   and 

_ r-r'-l 
,  ' n-2 

q < 1-e then 

H.   (r'.r)^ ,    (X) 
1-Qi,qv    r',rtn

w 

1-^   (r'.r)^ ,   (X) 

We see from Corollary 3.13 that the tolerance limit in Corollary 3.12 

is sharp for most q and a values of interest. 

Tolerance limits for SDFR distributions although probably not as useful 

as those for SIFR distributions are nevertheless quite interesting. Again, 

we give one sided tolerance limits when F is skewed and two sided limits 

when F is symmetric. 

Theorem 3.14 

If  F  is SDFR,  F(0) - 's , 1 - F(x) >^ F(-x)  for *  >_ 0   ,  0 <^ q <_ h 

and  (n-2)H  . 0 (r1^) < 1 then 

^-rKlV'^V.r.n^] i1"«} i1- ' 

^MM 
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Proof 

Let G be the Laplace distribution, then by Corollary 3.2 

FT-H . - (r,,r)e ,   (X)] t' cf-H T . (r'.r)^ ,    (Y)| 
I   a,l-2q      r',r,n-J -   I   a,l-2qv     r'.r.n-'J 

for  (n-2)H . - (r*,r) 1 1 .  By noting that 
a,i-/q 

PG{GKl-2q(r,'r)5r'.r.n^] ^^ = ^ 

we have proved the theorem. || 

In a similar way to Corollary 3.7 we see that if  1-a ^ 1-e  , then 

for the above tolerance limit to exist 

i     X^(r-r--l) 1       |  ^.^ ) 

Thus we see that we cannot achieve high coverage with this tolerance limit. 

Now in the case that F is symmetric we can obtain two sided tolerance limits. 

From Theorem 3.14 we obtain immediately 

Theorem 3.15 

If F is SDFR, symmetric about the origin, and  (n-2)H  (r'.r) <^ 1 , 
Ot, q 

then 

H  (r'.Oe ,   (X) 
a,qv     r'.r.n - 

??\   f dF(x) I*?) 1 1"a 

-H  (r,,r)e ,    (X) 
a,qv     r'.r.n^' 

Again in a similar way to Corollary 3.7, we see that if  1-a ^ 1-e  , then 

for the above tolerance limit to exist it is necessary that 

Mk^MM^MH 
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2 
I  > 

q £ 1 - exp \-  2(n-2) )   i ! - "P ^ "S^—j i ^ 

and so high coverage Is not possible. 

Theorem 3.16 

If F Is SDFR,  F(0) - Ij , 1 - F(x) >_ F(-x)  for x>_Q,h<_q<_l, 

and nH.  - .(r'.r) > 1 , then l-a,2q-l  '  — 

PF{1-F[Hl-a.2q-l(
r,«r)Ör.,r.n(2L)] IM} 1 1- ' 

Proof 

Let G be the Laplace distribution, then by Corollary 3.2, 

F[Hl-a.2q-l^
r>V.r.n^)] f G K-^q-l^'^^r'.r,n^] 

for mH l-a 2q-l^r,,r^ - 1 *  By noting that 

PG{G[Hl-a,2q-l
(r,'r^r'.r,n^] ^^ "^ 

we have proved the theorem. | | 

If l-a >^ 1-e  , then by similar reasoning to that used in Corollary 3.11, 

we see that for the above tolerance limit to exist 

l-q<.^exP^ ^ j   l!seXP(--^—) • 

It will thus be necessary to truncate the sample rather severely In order 

that the tolerance limit on the tail probability exists. 

If F is SDFR and symmetric about the origin, then from Theorem 3.16 

we have, 
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Corollary 3.17 

If F is SDFR, symmetric about the origin and mH.   (r'.r) ^1 , then 

+H. n    (T'tT)er,  r  n(x) l-a,q      r ,r,n — 

/ 

-H.   (rl,r)e ,    (X) l-o,q     r ,r,n— 

PF <  / dF(x) 1 q > 1 1-a  . 

In the same way as for Theorem 3.16, the sample will have to be truncated 

rather severely In order that the tolerance limit exists. 

«J 
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3.2 Tolerance Limits Based on the Standard Deviation 

Frequently sampling plans are based on the assumption that the underlying 

distribution Is normal, which gives rise to tolerance limits of the form 

x + A.» where x and s are the sample mean and standard deviation 

respectively.  If the mean y Is known, which we will assume, the tolerance 

limits are of the form \i  + X^s .  Since we are generally not sure that the 

assumption of a normal distribution Is correct, It Is Interesting to see how 

robust the normal tolerance limits are against s-ordered alternatives.  The 

following theorem throws some light on this. 

Theorem 3.18 

If F < G and F , G are symmetric about the origin, then 
8 

Ppl I  dF(x)^a| 1(1) PG|  /  dG(x) 1 a| 

for all a e [0,1] and X < 1 , (X > /n) , where 

^i 
K 
n 

Proof 

Define G- by 

G2(x) = P(Y <_ x) 

and similarly for F2 .  We see that G^F^y2) = [G"1F(y)]2 and by 
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differentiation we find that G„ F_(x) is convex if G F(x) is convex 

for x > 0 . From Lemma 3.1 of Barlow and Proschan (1966a) 

for X2 ^ 1 (X2 >_ n) .  Since c"1? (X2) ^ Y2 

_ ,.2  2, st -St. „   ,,2 2N 
2(  Sx) - (- )  2(  SY)  ' 

The theorem now follows from the observation that  F2(x) ■ F(o{) - F(-/x) 

Applying the strong law of large numbers we obtain 

»Jorollary 3.19 

If F < G and F , G are symmetric about the origin, then 
s 

Xox 
f       dF(x) J' 
X0

X 
-AaY 

dG(x)       for X < 1 

2 
and a  is the variance of X • 

A 

This is the symmetric analogue of Fie,)  <_ 0(6-) , when F < G and 

ei , 6. are the means of F and G respectively.  [See Barlow and 

Marshall (1964), Theorem 7.1.] 

As an example of Theorem 3.18 we let G be the normal distribution with 

known mean but unknown variance. If we consider the tolerance limits u + Xs 

for G which contain 99% of the population with 99% probability we see that 

if the number of observations from G is n then X >_ /iT for n <_ 18 . 

Hence we can assert that if F < G , F symmetric and G the normal and both 

' * '' ■' - 
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with known means, then for a sample size less than 18, the 99%  tolerance limit 

with 99Z confidence based on the normal is conservative for F . 

■MSH 
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3.3 Confidence Bound on the Variance of a Symmetric SIFR Distribution 

In order to calculate a confidence bound on the variance of a Symmetrie 

SIFR distribution we need to develop bounds on the distribution in terms of 

the mean, which we will assume to be zero, and the variance.  We note that 

two symmetric SIFR distributions with the same mean and variance must cross 

at least three times.  Bounds will only be given to the right of the mean, 

bounds to the left following by the symmetry of  F . 

Lemma 3.20 

2 
If F is SIFR and symmetric about the origin with variance o  , then 

1*5       0 <_ x ^ o 

i  i  ~bx 
1 - Ji e        x > a 

2 
where b is a function of x and o  and is given by the solution to 

o » 2 — - 2e 
bZ 

(f^f'Tl) 

and the bound is sharp. 

Proof 

The bound for 0 <^ x <_ o    is obvious and is attained by the symmetric 

distribution with miss ^ at -o and +o . For x ^ o we consider the 

distribution GT(x)  which is symmetric about the origin and for positive 

arguments is given by 

II - h  e"bx   0 ^ x i T 

1 x > T   . 

Mam    - •- "' -■ - 
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where    b    is fletennlned by 

P 2    | x2dGT(x)   - o2 

We note that since F must cross G at least once in (O,00) , and G F(x) 

Is convex for x ^ 0 that F(x) ^ GT (x) , x >_ o . | 

Lenuna 3.21 

If    F    is SIFR and symmetric about the origin with variance    o2   ,  then 

sup      e 
0  <  A  <  o 

-a(x-A) 

F(x)   < 

0  < x  <  o 

x > a 

where    a    is given by the solution to 

(^)ta4 + 1-0 

Proof 

Consider the distribution G (x) , symmetric about the origin, and which 

for positive arguments is given by 

GA(x) = 

1 - J< e-a(x-A) 

0 < x < A 

x > A 

and where a  is given by 
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00 

2 I x2dGA(x) - o2 

and A lies in the range 0 <^ A <^ o .  Since G (x)  is SIFR with mean zero 

2 
and variance o  , it must cross F at least once in the interval (0,°°) . 

Let G  cross F from above at x ■ u(A) . If u(A) does not exist set 

u(A) = <,o .  Let us consider the following two cases: 

Case (i)  u(0) > o 

Since G F(x) is convex for x > 0 , we see that 

F(x) ^ Go(x)       0 ^ x ^ o . 

Case (ii)  u(0) < o 

Since G F(x) is convex for x >^ 0 , we see that u(A) t A , u(o) ■ <" 

and u(A)  is continuous in A on the positive support of F .  Therefore 

„/ \        -a(u-A)       -, 
F(x) <^ sup e 0 <_ x ^ o  . 

0<A<o 

The bound for x > o is obvious and is achieved by the distribution with 

mass ^ at x « -o and x = +o . || 

We are now in a position to derive a lower confidence bound on the 

variance of a symmetric SIFR distribution. 

Theorem 3.22 

If F is SIFR and symmetric about the origin, then 



AO 

X,.a2(r-r'-l) 
[02  8 (  

rV.n  )  . 2Q2. (X) exp [^ ^-^^^rr 
^.a2(r-r'-l)y     

r •r'n      *    2(n-^ 

(% (n-2)"2 + 2 /[n-2][xi_a2(r-r'-l)] j 

+ 4[x*.a2(r-r'-l)] ') 

Proof 

From Lemma 3.20 we have the bound 

F(t;a) > h(t;a) = 

t < o 

i   i  -bt 

1  - % e t > o  , 

and b  is given by the solution to (3.1).  If G is the Laplace distribution, 

then since F is SIFR 

^V.r.n^]  itF[ÄV.r.n(*)] lh[^2 V.r.n^ ' 0] • 

Since 

(^V.r.n®) 1 1 - 

xj_a2(r-r
,-l) 

l-o 

we have 

h(^25r'.r.n® ; 0) l1" 

2   -UX^Cr-r'-lA 
a    > b 

^ r fr,n — 

2(n-2) 

> 1-a 
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since o I b . Hence we have the result. 

^^MMMHM 
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IV.  PROPERTIES OF THE ORDER STATISTICS 

Marshall, Olkln and Proschan (1965) and Barlow and Proschan (1966a) have 

developed inequalities for order statistics arising from distributions F 

and G in the case that G F is starshaped on the support of F and 

G(G') ■ F(0 ) - 0 . Van Zwet (1964) has extensively treated inequalities for 

the expectations of order statistics arising from c-ordered and symmetric 

s-ordered distributions. These inequalities are not only interesting but are 

useful in developing bourJ : and giving insight into the nature of convex and 

concave-convex transformations.  We shall develop inequalities for the order 

statistics and for power combinations of the random variables in the case of 

two symmetric r-ordered distributions, except for one inequality where we 

require the stronger s-orderlng.  The inequalities reflect the fact that an 

antisymmetric starshaped transformation of a random variable shifts mass to 

the tails. 

Barlow and Proschan (1966) showed that if F(0) - G(0) - 0 and G  ^ 

is nondecreasing in x ^ 0 , then the ratio of order statistics EY, /EX. 

is also increasing in i «■ 1,2, .... n for all n ; i.e., r-ordering on the 

positive axis is preserved by the expected values of the order statistics. 

Van Zwet (1966) showed that if  F < G then [EY^.  - EY.  ^[EX.,^  - EX.  ] 
c        l  1+1,n    i,n    1+1,n    i,nJ 

is nondecreasing in 1 «= 1,2, ..., n for all n .  He also proved that if 

F < G , F and  G symmetric about the origin, then the expected values of the 

order statistics are similarly s-ordered.  Independently of van Zwei we 

proved a related result, namely that for r-ordered symmetric distributions the 

expected values of the order t,'itistics presewe the ordering. 

We shall need the concept of total posltlvlty.  A function K(x,y)  of 

two real variables x c X , y c Y , where X and Y are ordered sets, is 

said to be totally positive of order r (TP ) if for all  I 1 "> 1 r » 

SBHH 
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xl 1 x2 l • • • 1 xm 
and ^i 1 ^2 - "' * - ym • where each Xj £ X , y1 e Y 

we have the determinantal inequalities 

KCx.^-j) 
m 

> 0 . 
i.j-l 

For further treatment of TP functions and their properties, see Karlin (1964) 

It is convenient to define 

n! i-1 
K(i'n,X) " (i-l);"(n-i).' r_^x> (! " F(x)) 

,n-i 

We will need  the  following well-known  result; 

Lemma 4.1 

^(i.n.x)     is    TP^  in     i »   1,2,   ...     and    -«= <  x <  <»     . 

Irnof 

Since 

II 1       I   (x    < x„  <   ...   <  x     ;   a,   < a 
VV^x.)/     y       1 -    2 - -    n 1 

2  <   ...   <   an) 

is a generalized Vandermonde matrix,  we  know  (see Gantmacher  (1959),  p.   118) 

that  it  is  totally positive.     The   lemma  follows.   | | 

Theorem 4.2 

Let  F < G , F and G symmetric about the origin, then 

(i) 
EX 

i,n      L J 
+ 1 



AA 

(ü) 
EX 

EY 
h-i-H.n 

n-i+l,n 

EX 

EY 
*— + n  >  1 

i.n 

Proof 

Let 

h(i) 

00 

/ 
(x - cG"1F(x))K(i,n,x)dF(x) 

EY-ftH- 
Since    F    is symmetric,  we have  that 

h(i)  - -h(n-i-H)     for    i  > 
fnl 

i   ; 

n+l* 
i.e.,     h(i)     is antisymmetric  about    —r— .     Since    K(i,n,y')     is    TP^ for 

i ■ 1,2,   ...   ;  -00 < x < ^  ,  and     (x - cG    F(x))     changes sign at most three 

times  for    c ^ 0  , we have by the variation diminishing pruperty of    TP 

functions that    h(i)    must  change sign at most  three times.    If    h(i)    does 

change sign three times  then the order of the signs must be the same as  for 

(x - cG    F(x))   ;  viz, + - + -   .     Since    h(i)     is  antisymmetric about    —5— , 
EX, l 

we see  that 
EY, - [2 I i,n ,- J 

+  1  ,  proving  (i) 

(11) may be most readily proved by a geometrical argument. 

By  conditioning on  the     (n+l)st    observation,  we  see that 

EX4     - (1 - -rr|Ex.   ^i + -rr i,n      \ n+ly     i,n+l      n+l EX 1+1,n+l     ' 

and hence for    n <  21    we obtain the following diagram from which we observe 

EY, 

EX 
i.n 

l.n 
+  n    for    n .<  2i 

■■Hi 



EY 
1+1,n+1 

EY 
l.n 

EY 
l,n+l 

Similarly we can show that 
l.n+l 1+1,n+1 
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EY 

EX 
1x11 I n  for n > 21 
i,n 

We are now in a position to obtain bounds on EX.   .  Note that 
i,n 

EXr-i 

EY, , - EY.   - EYr-i Ui X'n [fj + l.n 

for i >^ J-r + 1 , and where  -r-  is the smallest integer larger than or 

equal to -r .    The first inequality follows from Theorem 4.2 (ii), and the 

second from Theorem 4.2 (i).  If 

/ 
x|dF(x)     , 

then 

0EY, OEY, 
-,-- <   EX <   

+ l,n 

for    i  >^ j-r   + 1  .    Note that no nontrivial upper bound exists when    n    is odd. 

rtaaMMM 
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Simllary for    1 
-ffl 

-eEY, -SEY. 
 kiB  <  Ev <  iiB  
EYr-T - EXl,n - EY,       ^1      * 

n „ l,n-l+l 
.2j   '  n 

Using Theorem 4.2,  inequalities for linear combinations of order 

strtistics from r-ordered distribution» may be derived in much the same way 

as Barlow and Proschan  (1966a) do for star-shaped ordering (i.e., 

F(0)   - G(0)  - 0    and    G~ F    starshaped on the support of    F).    As these 

inequalities parallel those of Barlow and Proschan   (1966a} we shall omit  them. 

Van Zwet has obtained necessary and sufficient  conditions on 

a:j,a2,   ,.., a      such that 

il^J-iL^v) 
for    F < G .       We derive  sufficient conditions on    a, ,a0 a      such that 

c 1    / n 

the above inequality is  true when    F <  G  .    We strongly believe  that  these 
s 

conditions are also necessary but have not been able to show this. 

Theorem 4.3 

If F < G , G symmetric,  F(0) - G(0) - h    and  1 - F(x) ^ F(-x) , x >_ 0 

then 

(4.1) 

when 

<| 'A.„) 1 =(f ^M) 

Personal communication. 

■HM^MMiMMI 
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(4.2)      o < T h\ Ä^^d-y)11^ + y^Ci-y)^^ <_ 1 

and 

(4.3) SO)^^'1-^-5!    1° 
for all    ^ < y <  1 

Proof 

We prove  (4.1)   for  the unbracketted inequalities first. 

Let 

h(x)   - I ai   (1_1)?
:

(n.1),   Gi"1(x)(l-G(x))n"iG,(x)      . 

Now by letting    $ « -F_ G    the theorem can be re-expressed as follows.     For 

if)    concave-convex about  the origin and    i})(x)   <^ -4)(-x)     for    x ^ 0    and    G 

is  symmetric  about  the  origin then 

(4.4) 

/    OO \ 00 

J  Axh(x)dJ<   / 
\—OO / _00 

<t)(x)h(x)dx 

if (4.2) and (4.3) are satisfied for all '-J 1 y 1 1 . By an argument similar 

to that used in Theorem 2.1 we can see that (4.1) is true if and only if (4.4) 

holds for all x1 1 xf> 0 , when ^ is a double angle function: i.e.. 

x + x0 for x <_ -Xy 

<|>(x) ■ '  0    for -Xy < x < x 

x - x  for x >^ x1 

—*m 
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For ^ a double angle function, (4.4) becomes 

-X- " 

J     (x+x0)h(x)dx + / (x-x1)h(x)dx 

Xl 

:[o, / xh(x)dx - Xj I for f ImaxlO, | xh(x)dx - x. i for  I xh(x)dx > 0 

minlO, / xh(x)dx + xn I for  / xh(x)dx < 0 ilO, / xh(x)dx + x0j for  / 

n        , 
Let p(y) ' I ai (n_1)"

,
(i_1), y (l-y)""  and substituting y - G (x) { 

In (4.5) we obtain 

y* (G'^y) - G"1(l-y0))p(y)dy + j    (G'^y) - G"1(y1))p(y)dy 

•/y1 

(4.6) J maxlO, / G"1(y)p(y)dy - G"1(y1)J  for f G~1(y)p(y)dy  >_ 0 

mlnjO, / G"1(y)p(y)dy - G"1(l-y0)j  for AG"1(y)p(y)dy < 0  , 

and (4.1) Is true if and only if (4.6) is true for all 1 * y, .1 yn .1 4 

and all G   strictly increasing on (0,1)  and antisymmetric about % . 

We shall now show that (4.2) and (4.3) together imply (4.6). 

From the well-known equality 

E^IOT I'1-w-v - T (;). w-; 

i 

;    ' 

^mi^^mmm^mmm^mmmtmmammmmmammmmmmtm 
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we see that   (4.2)   is  equivalent  to 

1-n 1 

(4.7) 0 1 "  / P(y)dy + /p(y)dy ^ 1 ^ <_ n <. 1 

and  (4.3)   is  equivalent  to 

1-n 

(4.8) -    /   p(y)dy ^0 j <  n  <   1 

i-n 

/ 

Let    G    (x)     be  a  "double step  function";   that  is  for    li <   n  <   1 

■1 0 <  x <  l-n 

G    (x)  m {   0        Irn <  x <  n 

1 f1 <  x <  1 

If (4.7) and (4.8) are true we can see by substitution that 

1, 
_i 

(y)p(y)dy >  0    and r o 

j    (G'1(y)-G  1(l-y0))p(y)dy + /    (G"1(y)-G"1(y1))p(y)dy 

o yl 

O./G-. 1 |)B | G'i(y)p(y)dy  -  G"1(y1)| 

Ü 

Since any strictly  increasing  function defined on    (0,1)     and  antisymmetric 

about    h    may be approximated arbitrarily  closely from below  (above)   for 

x > H  (x <  -i)     by  a positive multiple of  double  step functions,  and  since 
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for    or .1 0 , 

»1 maxjo,  rG"1(y)p(y)dy - G^iyA 

(y)p(y)dy - G"1^)} 

the theorem follows by the Lebesgue monotone convergence  theorem.     If 

1 - F(x)   <^ F(-x)    the proof follows in a similar way.   | | 

Similarly to Theorem 4.3 we obtain 

Corollary 4.5 

(<), If F < G , G symmetric,  F(0) - G(0) - I5 , 1 - F(x) VF(-X) . x > 0 , 

EY.   exists then 
i,n 

p§ *i*\) i <§ 'Sh.) 

if 

-1 < X6)vi[yJ(i-y)n'j+yn"j(i-y)j]-Äiio 

and 

;L0v^n"3<^ 
for all % f. y £ 1 . 

If    F    is  symmetric we can deduce the following corollary from the proof 

of Theorem 4.3. 
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Corollary 4.6 

If  F < G , F, G symmetric about the origin and EY    exists then 

?{l a.EX       )     (-    C[l  a.EY,     ) 
\l   1    l>n)     -     \l   1   ^v 

if 

0 i' % 0 5J+i[yJa-y,n"J + yn"j<1-y,3]-*i 'I"" 

for all    4 1 y 1 1  • 

Van Zwet (196A) proves that if  F < G and F , G symmetric about the 

origin, then 

(4.9, J^L . Jm£L 
[ElxiT [ElY!a] 

for  those values of    a    such  that     EjYi       exists and 

EX2k              EY2k 

(4.10) — ^-^  for    k -  1,2,   ... 

(EX^) (EY") 

2k 
for  those values of    k    for which    EY exists.     We will  prove a stronger 

result;   namely  that given    F  <  G     then  the  inequalities   (4.9)   and   (4.1U)   hold 

stochastically  for the usual  estimates  of  the expectations,  and  hence by  the 

strong  law of  large numbers,   for  the  expectations  themselves. 

We need  to  introduce the  concept   of majorization,   and one  of  the theorems 

applying  this  concept.     For a  fuller  treatment  see Hardy  Littlewood and Polya 

(1959)   and Ostrowski   (1952). 
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Definition 

(i)     A sequence    a m  (a.,   ...,  a )    is said to majorlze a sequence 

b -  (b, b )     (written    a >-b)     If    a,   >   .,.   >  a    ,   b,   >  ...   > b     , and — 1' 'n —     — 1— —   nl— —   n' 
r r n n 
I aH  1 I b4     for    r - 1,   ....  n-1  ,  while    ^ a    =  )]  b    . 
II1 11 

Theorem A.7  (Hardy,  Littlewood and Pölya) 

If    4»    is convex on the  interval    I    and    x^x   wbere    x ,   ...,  x    ; 

y.,   ...,  y      belong to    I   ,   then 
I! x n 

n n 
I *(x ) > I *(yJ 
l       ^^       l 

Theorem 4.8 

If    F < G ,  F    and    G    symmetric about the origin,   then 

(D ^ ^b   i   " ?r 0 i a 1 b 

and if    E|Y|      exists then 

(ii) ^ih! < üM^! 
(Elxl3) (ElYl3) 

Proof 

Raise to the a   power the absolute value of the observations from F , 

and order so that 

- 
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Now if  F (x) - P^lxl3 < x) , a > 0 we see that G-1? (X3) - [G"1F(x)]a and 
a     F ' '  —      — a a 

since  i—^ t x > 0 we have 
x      — 

_§_§  t x , 0 

If follows from a theorem in Marshall, Olkin and Proschan (1966) [cf. Barlow 

and Proschan (1966), Theorem 3.12] that 

\ I |x|i \ St \ I K \ 

for    k =   1,2,   ...,   n  . 

Now  from Theorem  4.7,   by  considering  the  convex function    ({i(x)  = x     , 

x ^ 0  ,   c ^ 1    we obtain the  stochastic  inequality 

n n 
l   IX,!3' V   lY.|aC 

1       ^ st i   ^ < 

(| ..if " (l K?) 

Letting     ac = b    we obtain 

(M..(H 
Now if    E|Y|       exists,   then    E|Y|       exists and  by  a  limiting argument 

we  can see  that    E|x|       exists.      (ii)   is then  true  by  the  strong  law of   large 

numbers.    | I 
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Corollary 4.9 

If F < 6 , F and G symmetric about the origin, then 

(i) 

I x2rlc     I Y2rk 
r - 1,2, ... 

K — X,£, ... 

2rk 
(ii)  If EY    exists then 

EX' 2rk EY 
2rk 

2r 2r 
(EX^r)      (EY^r) 

Corollary 4.10 

.2rk 
If F < G , F and G symmetric about the origin and EY.   exists, then 

EX 2rk EY 2rk 

k —      k 
(EX^r)     (EY^r) 

for k - 1,2, ... 

Proof 

The proof follows in the same way as for Corollary 4.9 and by the 

;(i)F(i)w " " iW s ""'^ "(i) observation that ^J^nxW " G* F(x) , where F. . (x) - P(X <_ x) . 

gnLr:.-2,-_^r- :.;rj;:a 
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